

Formsprag®

Overrunning Clutches

Formsprag and Stieber have been designing, manufacturing and delivering dependable, long-lived, precision power transmission products for over 50 years, providing one of the broadest lines of overrunning clutches in the world.

Formsprag and Stieber overrunning clutches deliver thoroughly proven, dependable power transmission. Careful selection of highest quality materials, precisionmanufacturing by experienced craftsmen, conscientious assembly, and rigid adherence to detail guarantee a reliable, quality product. Overrunning clutches handle torque loads up to 700,000 lb.ft. (949200 Nm). Other sizes and designs are available by special order.

Designs Feature:

- Instantaneous action, no backlash
- Infinitely changing wear points
- More torque in less space with sprags
- Full sprag and roller complements
- Formchrome® sprags
- · "Free-action" retainer
- PCE positive continuous engagement
- Inner Race C/T "Centrifugal throwout" sprags
- Outer Race C/T "Centrifugal throwout" sprags

Formsprag and Stieber are manufacturers of the highest quality overrunning clutches in the marketplace. Formsprag is also a supplier to the commercial and military aircraft markets. The quality documentation systems and procedures necessary to support this level of quality products has facilitated Formsprag's certification for ISO-9001 in October 1993 and Stieber's ISO-9001 in October 1997.

Formsprag Sprag Retainer Assemblies

The Formsprag Retainer Assembly permits each sprag to have free and independent action. This independence allows each sprag to adapt to variations in annular space (eccentricities) so that when the clutch is engaged, the load is proportionately shared among all sprags, eliminating the possibility of clutch damage resulting from the entire load being absorbed by just a few sprags. This insures dependable performance without compromising size, weight, or cost.

Springs energize the sprags into position for instantaneous engagement with no backlash. Contracting, expanding, and torsional springs have been developed by Formsprag. Selection of spring design depends upon the specific application requirements.

Features

- · Free-action Retainer
- Free-action Sprags
- PCE Positive Continuous Engagement
- C/T Centrifugal Throwout Sprags (optional)
- Formchrome Sprags

Benefits

- Instantaneous action, no backlash
- Infinitely changing wear points, more torque, less space
- Protects clutch from damage due to momentary overload
- · No rubbing contact yielding longer wear life
- Harder sprag surface yielding longer wear life

Aerospace and Defense Applications

Helicopter Main Drive Auto-Rotation Clutch

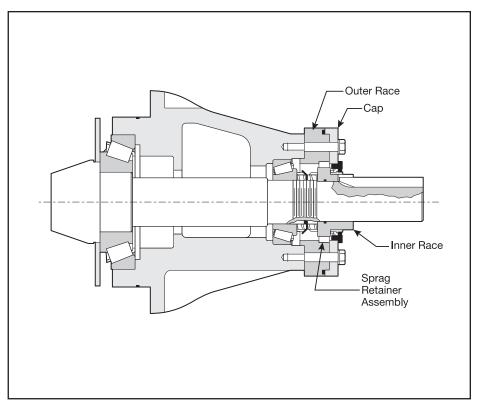
Formsprag Clutch Sprag Retainer Assemblies are used in the main drive of a single or multi-engine helicopter to provide auto-rotation capability, which helps assure a safe landing in an emergency situation.

Gas Turbine Engine Starter Clutch

Formsprag Clutch Sprag Retainer Assemblies are used in the starter drive of a jet turbine engine to provide automatic disconnect from the engine upon light-up.

Aircraft Auxiliary Power Unit (APU) Starter Clutch

Formsprag Clutch Sprag Retainer Assemblies are used in the starter drive of APUs to automatically disconnect the starter after powering up.



Helicopter Twinning Gearbox Clutch

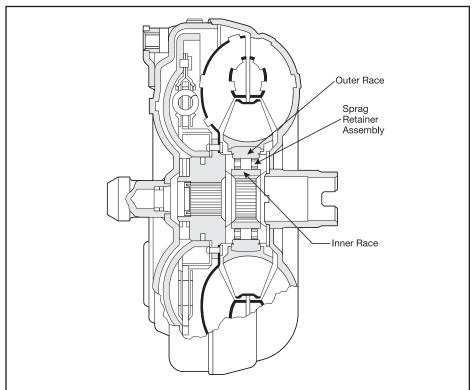
Formsprag Clutch Sprag Retainer Assemblies are used in the driveline gearboxes of multi-engine helicopters to allow twinning of the engines for effficient power sharing and synchronization or disengagement of one engine.

Industrial & Vehicular Applications

A retainer assembly is used with a spring set brake to provide a releasable backstopping feature to the winch drive. The Sprag retainer allows the spool to rotate in one direction only unless the spring set brake is released.

A retainer assembly in agriculture transmissions automatically disconnects low speed gears.

Sprag retainer assemblies are used in torque converters and special racing transmissions to allow for internal speed differentials.



A retainer assembly in the Diesel Engine Turbo Charger provides automatic disconnect at high speeds.

Principles of Operation

Sprag Design

This sprag-type design overrunning clutch generally consists of an inner race, an outer race, a set of sprags, a sprag retainer, energizing springs, and bearings.

The wedging of the sprags between the races transmits power from one race to the other. The sprags have a greater diagonal dimension across one set of corners than across the other (see Figure 1). The wedging action occurs when the relative rotation of the inner and outer races tends to force the sprag to a more upright position where the cross-section is greater.

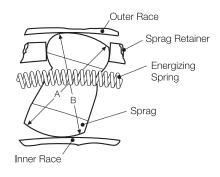


Figure 1 Detail of sprag. Dimension "A" is greater than dimension "B."

Gripping Angle

Wedging action depends upon the wedging, or gripping angle of the sprags between the races. The fundamental concept of sprag clutches requires that the coefficient of friction of the sprag, with respect to the inner race at the instant torque is applied in the drive direction, must be greater than the tangent of the gripping angle, GA. If the condition is not satisfied, wedging will not occur.

The gripping angle is determined by the construction of Figure 2, where points A and B are the points of contact of the sprag with the inner and outer races, respectively.

Figure 2 Geometry of sprag, showing gripping angle "GA."

Sprags are designed to have a low initial gripping angle to insure positive initial engagement. As torque increases, the sprags produce radial forces which cause race deflections, which make the sprags roll to new positions. Sprags are usually designed to have an increasing gripping angle as they roll from overrunning position to maximum loadcarrying position. A higher gripping angle reduces the radial load imposed by the sprag, thus permitting higher torques to be transmitted within the limits of race stretch and brinelling.

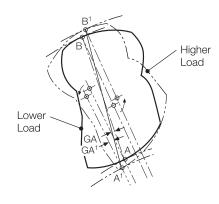


Figure 3 Gripping angle and annular space increase as load increases.

Figure 4 Formsprag and Stieber manufacture a wide variety of sprag sizes and shapes to meet the application requirements.

DC Sprag Retainer Assembly


DC (double cage) Sprag retainer assemblies have been used in industrial markets for over 20 years. The initial designs were dictated by the demands of the automotive industry for which they were originally developed. Since that time, many unique designs for the industrial market have been developed. The basic design includes the following components:

Sprags

The enhanced design of the DC Sprag results in giving the clutches more flexibility in lubrication and mounting than many other designs. On the surface the latest generation of DC clutches looks much the same as previous generations but there are major technical improvements incorporated.

- The DC Sprag gripping angle has been developed to provide a more stable initial engagement so that the sprags will not slip during the transition between overrunning and driving modes. This results in a robust design that reduces possible Sprag popping under extreme operating conditions.
- The DC Sprag design is compatible with all current lubricants used in power transmission equipment including those containing EP (extreme pressure) additives.

- The improved Sprag cam geometry has been designed to allow the DC clutches to operate with looser concentricity tolerances. The allowable TIR value has been increased by 33% over original designs.
- The cross sectional thickness of the DC Sprag has been increased to provide improved Sprag fatigue life.
- DC Sprag can be provided with "Formchrome" to extend the wear life in the most demanding high speed or continuously overrunning applications.

Double Cage Retainer

The double cage retainer was developed to provide full phasing through the use of two cage retainers to synchronize the movement of the full Sprag complement. The outer cage controls the sprags near the point of contact with the outer race and the inner cage controls the sprags near the point of contact with the inner race. The advantages are:

- Full phasing of all the sprags, assuring the same design engagement angle.
- · A robust design, providing easier handling and reducing problems when being assembled into the races.
- Longer wear life, through heat treatment/hardened cages.

Ribbon Energizing

The ribbon spring has been designed to provide constant and independent Sprag energizing over a wide range of operating conditions.

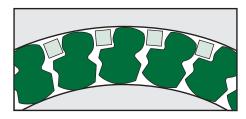
• The energizing is designed to work with all types of lubrication including EP additives.

PCE Design Advantages

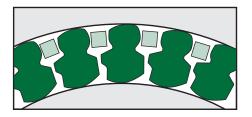
PCE Positive Continuous Engagement Retainer Assembly

The Formsprag PCE (Positive Continuous Engagement) design prevents sprag rollover from momentary torque overload, yet does not interfere with normal retainer engagement or overrunning. It possesses all the advantages of Formsprag Free-Action operation.

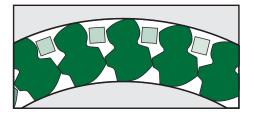
The patented PCE retainer was originally developed to meet the demands of high performance aircraft and helicopter applications. The PCE design provides reliable performance, even under extremes of torsional vibration and severe transient overload. PCE retainers are now available for a wide range of applications.


Formsprag PCE sprags and FreeAction® retainer are ideal for confined space applications with flight weight limitations. The retainer spaces and positions each sprag uniformly, yet allows independent action.

The geometry of the PCE Sprag provides proper top and bottom working surfaces for normal overrunning or engagement. The left hand and right hand flank projections, which prevent roll-over, also provide protection for the energizing springs, and prevent damage under overload conditions.


Free-action overrunning condition

The special configuration of the sprags permits individual PCE "Free-Action" in the presence of the normal runouts and eccentricities that occur between inner and outer races, even in a very precise assembly.


Regular engagement condition

The PCE "Free-Action" retainer permits individual positioning of the sprags so that when the load is applied, each sprag carries a proportionate share of the torque.

Overload imposed conditions

Under extreme overload conditions, the proven PCE sprag retainer configuration results in positive spragto-sprag abutment, which prevents excessive clutch windup. The flank of one sprag comes into contact with the flank of the next, resisting further sprag roll. This prevents the sprag from going past the cam corner, protecting the clutch against damage during momentary overload.

Formsprag Centrifugal Throwout, or C/T, retainer assemblies are designed for high speed overrunning, lower speed drive conditions.

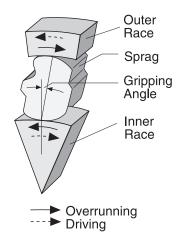
The centrifugally disengaging sprag design locates the center of gravity (CG) of the sprag relative to its contact point on the outer sprag diameter, such that when the outer race is overrunning the centrifugal force on the sprags overcomes the energizing force of the springs. This causes the sprags to completely lift off the inner race. This "lift off' speed must always be greater than the maximum drive speed to insure positive sprag energizing. For C/T action to occur, the outer race must be the overrunning member. Overrunning the inner race does not result in C/T sprag lift off.

The primary advantage of the centrifugal throwout sprag retainer is that when the sprags lift off the inner race there is no rubbing contact. Therefore, the overrunning life of the clutch is determined only by the life of its bearings and seals.

Low RPM-Conventional Overrunning

During low speed overrunning, the C/T retainer possesses all of the benefits of the "Free-Action" retainer.

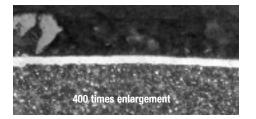
High RPM-C/T Overrunning


At the lift-off speed, the sprags overcome the spring energizing force and lift completely off the inner race, thereby eliminating rubbing contact.

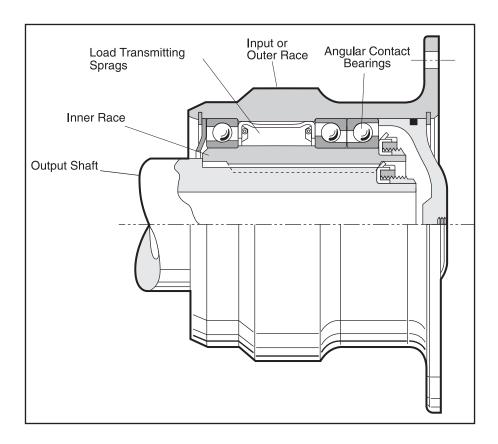
Formchrome® extends sprag life

Formsprag's Formchrome process extends sprag life to lower your equipment costs. This special technique diffuses chromium into the sprag steel to produce an ultrahard, long wearing surface. Formchrome increases the surface hardness of the base metal. SAE 52100 steel, from 800 Knoop to approximately 1,300 Knoop. Subsequent heat treatment ensures a hard sprag core to support the chromized surface.

For the most demanding applications, patented Pink Phase Super Formchrome offers unique protection against wear. An intermediate layer of chromium nitride, the pink phase, is formed by diffusion of nitrogen into the metallic surface. The surface hardness produced by this process is approximately 2,000 Knoop.


PCE and standard sprags come with Formchrome chromium carbide surfaces as a standard feature. Pink Phase Super Formchrome is optional. Sprags chromized by either method will last significantly longer than plain steel sprags hardened to 800 Knoop.

Excessive wear causes gripping angle of a sprag clutch to increase to the point where, eventually, the clutch will not operate properly. High wear resistance in a sprag material is important, particularly when clutches must operate at high speed in the overrunning direction.


Hardness Comparison

	Hardness
Material	(Knoop)
Diamond	7,000
Titanium Carbide	2,470
Pink-Phase Chromize	2,000
Tungsten Carbide/Cobalt Alloy	1,400-1,480
Chromized SAE52100 Steel	1,200-1,300
Chromium	935
M-50 Steel, or SAE52100 Steel (Rc 63)	800
Glass (Soda-Lime)	530
Silver	60

Selection Procedure

Service Factors*

Type of Load	Service Factor
Gradually applied steady loads	1.0
Fluctuating load with minor shock	1.5
Suddenly applied loads and indexing	2.0
High torque, severe shock, rugged duty (jogging)	4.0 to 6.0

*For a holdback or backstop, consult Formprag's Application Engineering Department.

When torsional or linear vibration is present, increase the service factor at least 50%. For severe vibration, a greater service factor increase is necessary.

1. Calculate load torque to be transmitted by the clutch.

Torque (Ib.ft.) =
$$\frac{5252 \times HP}{RPM}$$

Torque (Nm) =

Torque (lb.ft.) x 1.356 Nm/lb.ft.

- 2. Select service factor from table below.
- 3. Determine design torque—multiply load torque by service factor.
- 4. Select clutch from tables on pages 10 through 13, based on design torque and available space.
- Two retainer assemblies can be used side-by-side with the same inner and outer races, resulting in a torque capacity equal to the sum of the capacities of the two assemblies.
- 5. Overrunning Considerations: Allowable overrunning speeds are dependent primarily on two variables, sprag contact pressure and lubrication. As speed increases, it becomes more critical to balance these two factors to maximize design life. To insure design optimization, ALL applications should be referred to Formsprag's Application Engineering Department for technical review.
- It is recommended that the design incorporate the inner race as the overrunning member, as this arrangement permits higher overrunning speeds.
- C/T retainers are designed for outer race overrunning and may be used only when the drive speed is substantially less than the overrunning speed.

Race Requirements

It is essential to control the following design characteristics to ensure proper clutch function: axial taper of the races, surface finish, and cumulative eccentricity (which is dependent upon bearing clearances and eccentricities and race diameter tolerances).

Taper

Axial taper of the ground sprag diameters should be limited to .0002 inch per inch.

Surface Finish

Sprag diameters should be ground to a microfinish of 15 to 25 microinches. These surfaces should be free of any surface defects, such as grinding burns and checks, stringers, laps, or inclusions of any kind.

Concentricity

Eccentricities of the sprag diameters must be held to the values listed in the chart below. The accumulated eccentricities should be carefully checked to insure that they are under this limit. Aircraft applications at higher RPM must be a tighter concentricity than listed. Consult Formsprag Application Engineering Department.

Inner Race

Sprag Diameter (in.)	T.I.R. (in.)	mm
Below 2	.001	.025
2 to 3	.002	.051
Over 3	.003	.076

Materials/Races

A carburizing grade of steel, free from inclusions is recommended for use as inner and outer race material. Vacuum degassed steel is preferable and is used in Formsprag clutch designs as a standard material. For best heat treat properties, alloy steels such as SAE 8620 are preferred for smaller races (smaller than 3-1/4 inches outer race diameter), SAE 9310, SAE 8630, or SAE 8640 for larger races (3-1/4 inches and larger outer race diameter).

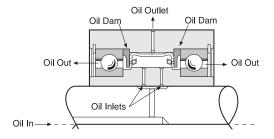
Hardness

Inner Race Sprag Diameter (in.)	Inner and Outer Race Sprag Diameter						
Below 3/4	.030	to	.040				
3/4 to 4-1/4	.050	to	.080				
Over 4-1/4	.090	to	.100				

The surface hardness of the sprag diameters is to be 58-62 Rc and the core hardness of the races is to be 28 Rc minimum.

*Distance from the finished, ground surface to the point where 50 Rockwell "C" reading is obtained is the effective case depth.

These case depths allow for regrinding of the races for use with over-size sprags as part of our rebuildable design concept. For applications that do not require this rebuilding feature, thinner case depths are possible, contact Formsprag Engineering.


Lubrication

Proper lubrication is essential to sprag retainer life. In any application, the method and type of lubrication must be considered with the initial design.

The following drawing illustrates a method that assures continuous oil flow at the inner race surface during high speed operation. Oil flows into the clutch annulus from the center drilled shaft through the holes in the inner race. Oil dams extend below the inner race surface to maintain the oil level and provide lubrication at the sprag/inner race contact line. A small purge hole is located in the outer race to allow contaminants to escape from the annulus.

Oils containing slippery or anti-wear additives, such as graphite or molybdenum disulfide, or extreme pressure (EP) type lubricant should not be used because the lubrication films will inhibit proper sprag engagement. Operating temperature is also a prime consideration when selecting a lubricant.

Formsprag retainers should be lubricated with a good grade of ATF, SAE 10 or SAE 20 oils. Also, oils meeting specifications MIL-H-5606, MIL-PRF-7808, MIL-PRF-23699 or DOD-L-85734 are acceptable. For a complete list of

Overrunning, Indexing, Backstopping **External Bearing Support Required, Sprag Clutches**

Model DC is a sprag type dual cage retainer assembly without inner or outer races. It must be installed in a

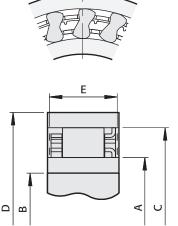
design providing races, bearing support for axial and radial loads, lubrication and sealing. The sprag annular space must be maintained. Inner and outer races must both have a minimum plain width "E",

without any recess, to ensure the clutch functions correctly. Inner and outer races are also available, as shown on the following pages. Alternatively, races can be made in case hardened steel shafts, or housings, to the specification below. Surface hardness of the finished part should be HRC 60 to 62, for a depth of .024" (.6mm) minimum.

Core hardness should be HRC35 to 45. Surface roughness should not exceed 22Ra. Maximum taper between races: .0003" (.007mm) for .984" (25mm) width.

Specifications

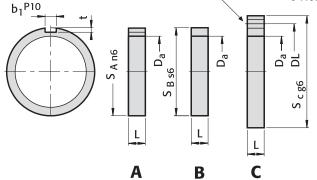
Ороспос		_								_
Size	Torque Capacity	Overrunni Max.	ing Spee RPM	d Reta I.D.	iner O.D.		Retainer Width			Shipping Weight
		Inner Race	Outer Race	+.0003 0002	C ±.0005	Annular Space	E _{min}	D _{min}	B _{max}	
	lb.ft.	nimax ²	namax ³	in	in	in*	in	in	in	lb (
	(Nm)	(min ⁻¹)	(min ⁻¹)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(kg)
DC2222G	46 (63)	8,600	4,300	0.875 (22.225)	1.531 (38.885)	0.33 (8.33)	0.39 (10)	1.97 (50)	0.67 (17)	0.07 (0.03)
DC2776	88 (119)	6,900	3,400	1.093 (27.762)	1.749 (44.422)	0.33 (8.33)	0.53 (13.5)	2.28 (58)	0.83 (21)	0.12 (0.055)
DC3034	92 (124)	6,300	3,100	1.194 (30.34)	1.850 (47)	0.33 (8.33)	0.53 (13.5)	2.44 (62)	0.91 (23)	0.13 (0.06)
DC3175 (3C)	117 (159)	6,000	3,000	1.250 (31.75)	1.906 (48.41)	0.33 (8.33)	0.53 (13.5)	2.48 (63)	0.94 (24)	0.13 (0.06)
DC3809A	203 (275)	5,000	2,500	1.499 (38.092)	2.156 (54.752)	0.33 (8.33)	0.63 (16)	2.80 (71)	1.14 (29)	0.19 (0.085)
DC4127(3C)	165 (224)	4,600	2,300	1.625 (41.275)	2.281 (57.935)	0.33 (8.33)	0.53 (13.5)	2.95 (75)	1.26 (32)	0.20 (0.09)
DC4445A	268 (363)	4,300	2,100	1.750 (44.45)	2.406 (61.11)	0.33 (8.33)	0.63 (16)	3.11 (79)	1.34 (34)	0.21 (0.095)
DC4972(4C)	226 (306)	3,800	1,900	1.958 (49.721)	2.613 (66.381)	0.33 (8.33)	0.53 (13.5)	3.39 (86)	1.50 (38)	0.22 (0.1)
DC5476A	387 (525)	3,500	1,700	2.156 (54.765)	2.812 (71.425)	0.33 (8.33)	0.63 (16)	3.62 (92)	1.65 (42)	0.24 (0.11)
DC5476A(4C)	387 (525)	3,500	1,700	2.156 (54.765)	2.812 (71.425)	0.33 (8.33)	0.63 (16)	3.62 (92)	1.65 (42)	0.29 (0.13)
DC5476B(4C)	568 (769)	3,500	1,700	2.156 (54.765)	2.812 (71.425)	0.33 (8.33)	0.83 (21)	3.62 (92)	1.65 (42)	0.40 (0.18)
DC5476C(4C)	731 (990)	3,500	1,700	2.156 (54.765)	2.812 (71.425)	0.33 (8.33)	1.0 (25.4)	3.62 (92)	1.65 (42)	0.44 (0.2)
DC5776A	446 (604)	3,300	1,600	2.274 (57.76)	2.930 (74.42)	0.33 (8.33)	0.63 (16)	3.86 (98)	1.73 (44)	0.24 (0.11)
DC6334B	595 (806)	3,000	1,500	2.494 (63.34)	3.150 (80)	0.33 (8.33)	0.83 (21)	4.09 (104)	1.97 (50)	0.39 (0.175)
DC7221(5C)	498 (675)	2,600	1,300	2.843 (72.217)	3.500 (88.877)	0.33 (8.33)	0.53 (13.5)	4.53 (115)	2.20 (56)	0.31 (0.14)
DC7221B	944 (1279)	2,600	1,300	2.843 (72.217)	3.500 (88.877)	0.33 (8.33)	0.83 (21)	4.53 (115)	2.20 (56)	0.41 (0.185)
DC7221B(5C)	944 (1279)	2,600	1,300	2.843 (72.217)	3.500 (88.877)	0.33 (8.33)	0.83 (21)	4.53 (115)	2.20 (56)	0.46 (0.21)
DC7969C(5C)	1504 (2038)	2,400	1,200	3.138 (79.698)	3.794 (96.358)	0.33 (8.33)	1.00 (25.4)	4.88 (124)	2.40 (61)	0.62 (0.28)
DC8334C	1517 (2055)	2,300	1,100	3.281 (83.34)	3.937 (100)	0.33 (8.33)	1.00 (25.4)	5.20 (132)	2.56 (65)	0.60 (0.27)
DC8729A	923 (1250)	2,200	1,100	3.437 (87.29)	4.093 (103.96)	0.33 (8.33)	0.63 (16)	5.28 (134)	2.64 (67)	0.36 (0.165)
DC10323A(3C)*	1190 (1612)	1,800	900	4.064 (103.231)	4.720 (119.891)	0.33 (8.33)	0.63	6.10 (155)	3.15 (80)	0.45 (0.205)
DC12334C*	3542 (4800)	1,500	750	4.856 (123.34)	5.512 (140)	0.33 (8.33)	1.00 (25.4)	7.24 (184)	3.78 (96)	0.88 (0.4)
DC12388C (110		1,500	750	4.878 (123.881)	5.625 (142.88)	0.37 (9.5)	1.00 (25.4)	7.32 (186)	3.78 (96)	0.88 (0.4)

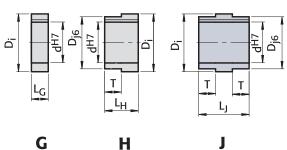

Races

DC races are offered for use with the DC retainer assemblies. The retainer assembly and races make a nonbearing supported clutch. Bearing support for axial and radial loads must be provided along with lubrication and sealing. The annular space tolerance must not be exceeded when all bearing clearances and mounting tolerances are considered. Taper between races should be below .0003" (.007mm) for .984" (25mm) width.

Outer races type A and B should be pressed into housings that will not deform after assembly.

Please contact our technical department if you need to transmit maximum clutch torque capacity with A and G type. Key stresses may have to be checked.

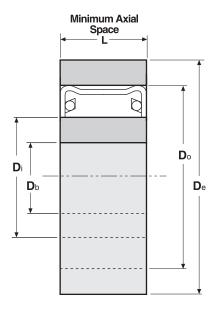

Sprag Retainer Assemblies



^{*} \pm 0.075mm, except size DC12388C(11C) is \pm 0.10mm

Dimensions inches (mm)

Size	d ^{H7}	L_G	L_{H}	L_{J}	D_{j6}	T	$D_{i} \left(\begin{array}{c} +.008 \\005 \end{array} \right)$	L	S_{An6}	b ₁ P10	t	S_{Bs6}	S_{Cg6}	$DL\left(\pm0.1\right)$	Α	$D_a \left(\pm 0.013 \right)$
To be use v	vith DC size	3809A:														
DC230A								0.6 (16)	2.8 (72)	0.2 (6)	0.1 (3.5)					2.2 (54.752)
DC230B								0.6 (16)				2.8 (72)				2.2 (54.752)
DC230C								0.6 (16)					3.7 (95)	3.1 (78)	0.28 (7)	2.2 (54.752)
DC230G10	0.39 (10)	0.6 (16)					1.5 (38.092)									
DC230G15	0.79 (15)	0.6 (16)					1.5 (38.092)									
DC230G20		0.6 (16)					1.5 (38.092)									
DC230H10	0.39 (10)		1.3 (33)		1.4 (35)	0.7 (17)	1.5 (38.092)									
DC230H15	0.59 (15)		1.3 (33)		1.4 (35)	0.7 (17)	1.5 (38.092)									
DC230H20	0.79 (20)		1.3 (33)		1.4 (35)	0.7 (17)	1.5 (38.092)									
DC230J10	0.39 (10))		2.0 (50)	1.4 (35)	0.7 (17)	1.5 (38.092)									
DC230J15	0.59 (15)			2.0 (50)	1.4 (35)	0.7 (17)	1.5 (38.092)									
DC230J20	0.79 (20)			2.0 (50)	1.4 (35)	0.7 (17)	1.5 (38.092)									
To be used	with DC siz	es 5476A, 5	476A(4C):													
DC167A								0.6 (16)	3.5 (90)	0.4 (10)	0.2 (5)					2.8 (71.425)
DC167B								0.6 (16)				3.5 (90)				2.8 (71.425)
DC167C								0.6 (16)					4.3 (110)	3.7 (95)	0.35 (9)	2.8 (71.425)
DC167G25	0.98 (25)	0.6 (16)					2.2 (54.765)									
DC167G30	1.18 (30)	0.6 (16)					2.2 (54.765)									
DC167G35	1.38 (35)	0.6 (16)					2.2 (54.765)									
DC167H25	0.98 (25)	. ,	1.4 (35)		2.0 (50)	0.7 (19)	2.2 (54.765)									
DC167H30	1.18 (30)		1.4 (35)		2.0 (50)	0.7 (19)	2.2 (54.765)									
DC167H35	1.38 (35)		1.4 (35)		2.0 (50)	0.7 (19)	2.2 (54.765)									
DC167J25	0.98 (25)		()	2.1 (54)	2.0 (50)	0.7 (19)	2.2 (54.765)									
DC167J30	1.18 (30)				2.0 (50)	0.7 (19)	2.2 (54.765)									
DC167J35	1.38 (35)			. ,	2.0 (50)	0.7 (19)	2.2 (54.765)									
To be used), 7221B, 7				(/									
DC168A		ì		, ,				0.8 (21)	4.3 (110)	0.6 (14)	0.2 (5.5)					3.5 (88.877)
DC168B								0.8 (21)	,	,	, ,	4.3 (110)				3.5 (88.877)
DC168C								0.8 (21)					5.5 (140)	4.7 (120)	0.43 (11)	3.5 (88.877)
DC168G40	1.57 (40)	0.8 (21)					2.8 (72.217)	()					(,	(- /	()	, (3.5.5.)
DC168G45	1.77 (45)	. ,					2.8 (72.217)									
DC168G50	, ,	0.8 (21)					2.8 (72.217)									
DC168H40	1.57 (40)		1.7 (42)		2.6 (65)	0.8 (21)	2.8 (72.217)									
DC168H45	1.77 (45)		1.7 (42)		2.6 (65)	0.8 (21)	2.8 (72.217)									
DC168H50	1.97 (50)		1.7 (42)		2.6 (65)	0.8 (21)	2.8 (72.217)									
DC168J40	1.57 (40)		(.=)	2.5 (63)	2.6 (65)	0.8 (21)	2.8 (72.217)									
DC168J45	1.77 (45)			. ,	2.6 (65)	0.8 (21)	2.8 (72.217)									
DC168J50	1.97 (50)			, ,	2.6 (65)	0.8 (21)	2.8 (72.217)									
To be used			3C).	2.0 (00)	2.0 (00)	0.0 (2.)	2.0 (12.211)									
DC235A	50 0.2	0 1002011 (0	,0,.					0.6 (16)	5.9 (150)	0.8 (20)	0.3 (7.5)					4.7 (119.891)
DC235B								0.6 (16)	0.0 (100)	0.0 (20)		5.9 (150)				4.7 (119.891)
DC235C								0.6 (16)				0.0 (.00)	7.5 (190)	6.7 (170)	0.43 (11)	4.7 (119.891)
DC235G55	2.17 (55)	0.6 (16)					4.1 (103.231)	0.0 (.0)					()	(1.0)	0.10 (11)	(1101001)
DC235G60	, ,	0.6 (16)					4.1 (103.231)									
DC235G75		0.6 (16)					4.1 (103.231)									
DC235H55	2.17 (55)	. ,	1.7 (43)		3.9 (100)	1 1 (27)	4.1 (103.231)									
DC235H60	2.36 (60)		1.7 (43)		3.9 (100)	. ,	4.1 (103.231)									
DC235H75	2.95 (75)		1.7 (43)		3.9 (100)	` '	4.1 (103.231)									
DC235J75	2.93 (73)		1.7 (43)	28 (70)	3.9 (100)	. ,	4.1 (103.231)									
DC235J60	2.17 (33)						4.1 (103.231)									
D050000	2.30 (00)			2.0 (10)	J.5 (100)	1.1 (41)	7.1 (1UJ.ZJI)									



PCE-Positive Continuous Engagement Sprag Retainers

Design Guide of Theoretical Sizes

Race design is critical to PCE action. The specific race dimensions listed below must be used to insure sprag lock-up at the proper torque and acceptable stress levels. The race thicknesses listed will yield lock-up at approximately 160% of rated torque. Thicker race sections will result in higher stress levels before PCE Sprag lock-up occurs. Maximum torque is reduced for thin race sections allowing PCE Sprag lock-up to occur at lower torque levels.

The tabulated clutch listings are computer generated. It is intended as an engineering guide for design purposes only. Consult Formsprag Engineering for details

Di = Inner race diameter

Do = Outer race sprag diameter

Db = Inner race bore

De = Outer race outer diameter

= Minimum axial space (actual retainer width + .005 inches)

Inner Sp		Oute S _l	Do er Race orag meter	Inner	b Race ore	De Outer Race OD		Ann	ean Jular ace	No. of Sprags
Inch +0.0000 -0.0005	mm +0.000 -0.013	Inch +0.0010 -0.0000	mm +0.025 -0.000	Inch +0.01 -0.01	mm +0.25 -0.25	Inch +0.01 -0.01	mm +0.25 -0.25	Inch	mm	
.8226	20.894	1.3182	33.482	0.500	12.70	1.62	41.15	0.248	6.299	17
.8282	21.036	1.3238	33.625	0.500	12.70	1.74	44.20	0.248	6.299	18
.9333	23.706	1.4289	36.294	0.600	15.24	1.77	44.96	0.248	6.299	19
.9854	25.029	1.4810	37.617	0.600	15.24	1.89	48.01	0.248	6.299	20
1.0651	27.054	1.5607	39.642	0.700	17.78	1.94	49.28	0.248	6.299	21
1.1227	28.517	1.6183	41.105	0.600	15.24	2.15	54.61	0.248	6.299	22
1.1548	29.332	1.6504	41.920	0.500	12.70	2.29	58.17	0.248	6.299	23
1.2479	31.697	1.7435	44.285	0.800	20.32	2.33	59.18	0.248	6.299	24
1.3085	33.236	1.8041	45.824	0.800	20.32	2.44	61.98	0.248	6.299	25
1.3691	34.775	1.8647	47.363	0.800	20.32	2.56	65.02	0.248	6.299	26
1.4287	36.289	1.9243	48.877	0.800	20.32	2.68	68.07	0.248	6.299	27
1.4893	37.828	1.9849	50.416	0.800	20.32	2.81	71.37	0.248	6.299	28
1.5499	39.367	2.0455	51.956	0.800	20.32	2.95	74.93	0.248	6.299	29
1.5698	39.873	2.3168	58.847	1.200	30.48	2.71	68.83	0.374	9.500	20
1.6810	42.697	2.4280	61.671	1.200	30.48	2.94	74.68	0.374	9.500	21
1.7692	44.938	2.5162	63.911	1.200	30.48	3.12	79.25	0.374	9.500	22
1.8594	47.229	2.6064	66.203	1.200	30.48	3.30	83.82	0.374	9.500	23
1.9810	50.317	2.7280	69.291	1.400	35.56	3.40	86.36	0.374	9.500	24
2.0752	52.710	2.8222	71.684	1.400	35.56	3.54	89.92	0.374	9.500	25
2.1654	55.001	2.9124	73.975	1.400	35.56	3.73	94.74	0.374	9.500	26
2.2681	57.610	3.0151	76.584	1.600	40.64	4.06	103.12	0.374	9.500	27
2.3628	60.015	3.1098	78.989	1.600	40.64	4.19	106.43	0.374	9.500	28
2.4570	62.408	3.2040	81.382	1.600	40.64	4.35	110.49	0.374	9.500	29
2.5506	64.785	3.2976	83.759	1.500	38.10	4.41	112.01	0.374	9.500	30
2.6458	67.203	3.3928	86.177	1.500	38.10	4.59	116.59	0.374	9.500	31
2.7410	69.621	3.4880	88.595	1.500	38.10	4.78	121.41	0.374	9.500	32
2.8362	72.039	3.5832	91.013	1.500	38.10	4.98	126.49	0.374	9.500	33
2.9309	74.445	3.6779	93.419	1.500	38.10	5.18	131.57	0.374	9.500	34
3.0261	76.863	3.7731	95.837	1.500	38.10	5.40	137.16	0.374	9.500	35 36
3.1208	79.268	3.8678	98.242	1.500	38.10	5.62	142.75	0.374	9.500	
3.2159 3.3116	81.684 84.115	3.9629 4.0586	100.658 103.088	1.500 1.500	38.10 38.10	5.86 6.10	148.84 154.94	0.374 0.374	9.500 9.500	37 38
3.4068	86.533	4.0500	105.507	1.500	38.10	6.37	161.80	0.374	9.500	39
3.5020	88.951	4.1336	107.925	1.500	38.10	6.64	168.66	0.374	9.500	40
3.5937	91.280	4.3407	110.254	1.200	30.48	6.72	170.69	0.374	9.500	41
3.6909	93.749	4.4379	112.723	1.200	30.48	6.96	176.78	0.374	9.500	42
3.7860	96.164	4.5330	115.138	1.200	30.48	7.27	184.66	0.374	9.500	43
3.8812	98.582	4.6282	117.556	1.200	30.48	7.59	192.79	0.374	9.500	44
3.9754	100.975	4.7224	119.949	0.800	20.32	7.68	195.07	0.374	9.500	45
4.0706	103.393	4.8176	122.367	0.800	20.32	8.01	203.45	0.374	9.500	46
4.1648	105.786	4.9118	124.760	0.000	0.00	8.22	208.79	0.374	9.500	47
4.2610	103.760	5.0080	127.203	0.000	0.00	8.55	217.17	0.374	9.500	48
4.3561	110.645	5.1031	129.619	0.000	0.00	8.94	227.08	0.374	9.500	49
4.4513	113.063	5.1983	132.037	0.000	0.00	9.35	237.49	0.374	9.500	50
4.4010	113.003	J. 1303	102.007	0.000	0.00	9.00	237.49	0.374	9.500	30

0.530	13.5	0.625	15.9	0.750	19.1	0.825	21.0	0.875	22.2	1.000	25.4	1.250	31.8
Inch	mm												
lb.ft.	Nm												
40	54	52	71	69	94	85	115	87	118	111	150		_
46	62	61	83	82	111	94	127	102	138	123	167	_	
55	75	74	100	98	133	113	153	117	159	148	201	_	_
61	83	82	111	109	148	126	171	130	176	164	222	_	_
73	99	97	132	130	176	150	203	154	209	196	266	_	_
81	110	108	146	144	195	165	224	180	244	216	293	_	_
86	117	114	155	153	207	175	237	191	259	229	310	_	_
99	134	133	180	177	240	204	277	209	283	265	359	_	_
109	148	145	197	193	262	222	301	229	310	291	395	_	_
119	161	158	214	212	287	243	329	250	339	319	433	_	_
129	175	172	233	229	310	264	358	272	369	345	468	_	_
140	190	186	252	248	336	286	388	295	400	374	507	_	_
150	203	201	273	268	363	309	419	319	433	405	549	_	_
183	248	259	351	338	458	369	500	389	527	442	599	552	748
200	271	283	384	395	536	462	626	508	689	616	835	767	1040
219	297	310	420	431	584	505	685	554	751	678	919	936	1269
240	325	339	460	471	639	552	748	606	822	741	1005	1024	1388
282	382	398	540	555	752	649	880	714	968	857	1162	1108	1502
309	419	436	591	606	822	711	964	780	1058	955	1295	1211	1642
333	451	470	637	655	888	766	1039	843	1143	1030	1396	1373	1862
366	496	517	701	720	976	843	1143	925	1254	1131	1533	1460	1979
397	538	560	759	780	1058	913	1238	1003	1360	1228	1665	1583	2146
430	583	606	822	843	1143	985	1335	1083	1468	1327	1799	1708	2316
463	628	652	884	906	1228	1063	1441	1165	1580	1425	1932	1837	2491
496	672	700	949	974	1321	1140	1546	1251	1696	1532	2077	1977	2680
532	721	750	1017	1042	1413	1221	1655	1340	1817	1643	2228	2117	2870
568	770	803	1089	1114	1510	1306	1771	1433	1943	1753	2377	2261	3065
607	823	856	1161	1188	1611	1395	1891	1532	2077	1867	2531	2453	3326
645	874	912	1236	1268	1719	1484	2012	1630	2210	1988	2695	2606	3533
686	930	967	1311	1342	1819	1571	2130	1726	2340	2117	2870	2765	3749
727	986	1027	1392	1427	1935	1671	2266	1829	2480	2235	3030	2936	3981
773	1048	1087	1474	1512	2050	1764	2392	1941	2632	2373	3217	3106	4211
818	1109	1146	1554	1597	2165	1864	2527	2052	2782	2510	3403	3289	4459
863	1170	1211	1642	1690	2291	1973	2675	2161	2930	2647	3589	3471	4706
906	1228	1273	1726	1769	2398	2067	2802	2278	3089	2776	3764	3708	5027
957	1298	1346	1825	1874	2541	2190	2969	2400	3254	2927	3968	3847	5216
1007	1365	1419	1924	1964	2663	2298	3116	2519	3415	3073	4166	4043	5481
1057 1105	1433 1498	1481 1551	2008 2103	2067 2154	2802 2920	2403 2523	3258 3421	2653 2768	3597 3753	3238 3403	4390 4614	4239 4458	5747 6044
1154	1565	1635	2217	2272	3080	2643	3583	2900	3932	3544	4805	4647	6300
1211	1642	1704	2310	2372	3216	2760	3742	3030	4108	3706	5025	4948	6708
1270	1722	1704	2426	2473	3353	2902	3935	3186	4320	3868	5244	5170	7009
1328	1801	1857	2518	2591	3513	3017	4090	3314	4493	4058	5502	5386	7302
1386	1879	1940	2630	2687	3643	3158	4090	3467	4701	4215	5715	5644	7652
1000	1010	1010		2007	55 10	0.00	1202	0.07	1.01	1210	0.10	0017	1002

Torque Ratings for Minimum Axial Space (L)

PCE-Positive Continuous Engagement sprag retainers:

- · Provide life and reliability of "Free Action" retainers
- Prevent clutch damage from momentary overloads
- · Available with centrifugal throwout (C/T) feature for increased wear life*

Patented PCE sprags protect your clutch from torque overloads. Under excessive torque, sprags roll beyond their normal engagement positions. A severe overload can roll standard sprags past their cam corners and cause the clutch to malfunction. PCE protects against rollover from momentary overload by providing positive, sprag-to-sprag abutment. When the overload is removed, the sprags return to their normal operating positions.

Formsprag has a selection of various overcam sprag sizes in free action, PCE and C/T designs, see table. The size and design selected is dependent upon the application.

Over-cam sprag dimensions:

(in.) 0.248 0.328 0.374 0.433 0.500 0.622

* PCE action may not be available with certain C/T retainers.

PCE Sprag Retainers

The retainer sizes listed below are designed to provide continuing support for existing field applications. They represent both past and present designs which may be supplied at short notice. If you are redesigning an installation or have a new design, not shown, please refer to pages 12 and 13 and consult Formsprag Engineering for details.

	er Race Diameter		er Race Diameter	_	er Race ore		iter Race OD		ean r Space	No. of Sprags		nimum Space	Torq Rati	
Inch +0.0000 -0.0005	mm +0.000 -0.013	Inch +0.0010 -0.0000	mm +0.025 -0.000	Inch +0.01 -0.01	mm +0.25 -0.25	Inch +0.01 -0.01	mm +0.25 -0.25	Inch	mm		Inch	mm	lb.ft.	Nm
.9614	24.420	1.4570	37.008	.625	15.875	2.00	50.800	0.248	6.299	20	0.720	18.288	100	135
1.2720	32.309	.7670	44.895	.875	22.225	2.37	60.325	0.248	6.299	24	0.465	11.811	100	135
1.3542	34.397	1.8502	47.041	.813	20.651	2.62	66.675	0.248	6.299	26	0.600	15.240	160	216
1.3753	34.933	2.1250	59.975	.813	20.651	3.00	76.20	0.374	9.500	18	0.868	22.047	250	339
1.4995	38.087	2.1550	54.757	1.000	25.40	2.75	69.850	0.328	8.331	21	0.588	14.935	165	223
1.6630	42.240	2.3200	58.928	1.188	30.175	3.00	76.20	0.328	8.331	23	1.005	25.527	500	677
1.7500	44.445	2.4060	61.112	1.250	31.750	3.00	76.20	0.328	8.331	24	.626	15.900	300	406
1.8594	47.229	2.6064	66.203	1.250	31.750	3.50	88.90	0.374	9.500	23	.945	24.003	700	949
1.9478	49.474	2.6970	68.504	1.312	33.325	4.25	107.95	0.374	9.500	24	1.268	32.207	1000	1356
1.9577	49.726	2.6130	66.370	1.375	34.925	3.50	88.90	0.328	8.331	27	1.000	25.400	475	644
2.2740	57.760	2.9292	74.402	1.531	38.887	4.00	101.60	0.328	8.331	30	1.000	25.400	912	1236
2.5540	64.872	3.3005	83.833	1.500	38.100	4.50	114.30	0.374	9.500	30	.755	19.685	960	1301
2.8317	71.925	3.5905	91.199	1.813	46.050	5.00	127.000	0.374	9.500	33	1.065	27.051	1790	2426
2.8345	71.996	3.5020	88.951	1.813	46.050	5.00	127.000	0.332	8.331	37	.817	20.752	675	915
2.8440	72.238	3.5910	91.199	1.813	46.050	5.38	136.65	0.374	9.500	33	1.268	32.207	2200	2983
3.2115	81.572	3.9580	100.533	2.250	57.150	5.00	127.000	0.374	9.500	37	1.045	26.543	1500	2033
4.0646	103.241	4.8120	122.225	2.750	69.850	6.00	152.400	0.374	9.500	46	.755	19.050	1300	1762
4.2387	107.663	5.2390	133.071	2.750	69.850	6.50	165.100	0.500	12.700	40	1.260	31.902	4600	2033
4.4925	114.110	5.2390	133.071	3.000	76.200	7.00	177.800	0.374	9.500	51	1.268	32.080	2600	3525
4.8777	123.876	5.6247	142.867	3.250	82.550	7.00	177.800	0.374	9.500	55	1.250	31.623	2700	3660

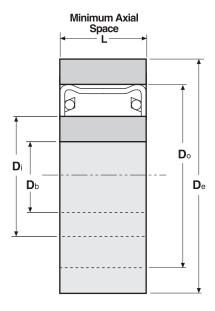
Standard Stock Retainers

The industrial retainers listed are used in Formsprag overrunning clutches and backstops. Retainers are available from stock and are offered for applications where fast supply is critical.

	Di, Inne	er Race	Do, Out	er Race	D	b)e	Me	an	No.	L			
	Spi	rag	Sp	rag	Inner	Race	Outer	Race	Ann	ular	of	Mini	mum	Torq	ue
	Diam	neter	Dian	neter	Во	re	0	D	Spa	ace	Sprags	Axial	Space	Rati	ng
Part No. (Ends with - spare)	Inch +0.0000 -0.0005	mm +0.000 -0.013	Inch +0.0010 -0.0000	mm +0.025 -0.000	Inch +0.01 -0.01			mm +0.25 -0.25	Inch	mm		Inch	mm	lb.ft.	Nm
CL41327-	1.0034	25.486	1.4990*	38.075*	0	0	2.00	50.80	0.248	6.299	20	0.655	16.64	85	115
CL42080-	1.3753	34.933	2.1250	53.975	0	0	3.00	76.20	0.374	9.500	18	0.868	22.05	250	339
CL41173-4	1.3783	35.009	2.1250	53.975	0	0	2.88	73.15	0.374	9.500	18	0.855	21.72	275	373
CL41291-	1.7849	45.336	2.5315	64.300	0	0	3.25	82.55	0.374	9.500	22	1.015	25.78	400	542
CL42081-	1.9478	49.474	2.6970	68.504	0	0	4.25	107.95	0.374	9.500	24	1.268	32.21	1,000	1,356
CL41123-1	2.1923	55.684	2.9388	74.646	0	0	3.75	95.25	0.374	9.500	28	1.016	25.81	650	881
CL40517-	2.2738	57.754	3.0203	76.715	0	0	3.94	100.07	0.374	9.499	28	.725	18.41	700	948
CL40741-1	2.5996	66.030	3.3461	84.991	0	0	4.44	112.78	0.374	9.500	32	1.016	25.81	1,300	1,763-
CL40584-	2.6811	68.100	3.4276	87.061	0	0	4.50	114.30	0.374	9.499	34	1.000	25.40	1,100	1,490
CL40557-	2.6811	68.100	3.4276	87.061	0	0	4.50	114.30	0.374	9.499	34	.707	17.95	800	1,084
CL42082-	2.8440	72.238	3.5905	91.199	0	0	5.38	136.65	0.374	9.500	33	1.268	32.21	2,200	2,983
CL42185-	3.3328	84.653	4.0793	103.614	0	0	5.38	136.65	0.374	9.500	38	1.032	26.21	2,200	2,983
CL41212-	3.3328	84.653	4.0793	103.614	0	0	5.50	139.70	0.374	9.500	40	1.011	25.67	1,600	2,168
CL41823-1	3.8002	96.525	4.8005	121.932	0	0	6.50	165.10	0.500	12.700	34	1.247	31.67	3,000	4,065
CL42084-	4.2387	107.663	5.2420	133.147	0	0	7.125	180.97	0.502	12.750	41	1.265	32.13	4,000	5,420

The shaded areas of the chart indicate those retainers that exhibit PCE roll-over protection. Your application will be significantly upgraded by the PCE feature and the superior life

*+0.0005 in.


+0.013 mm -0.000 mm

Race Design Considerations

Race design is critical to the proper performance of an overrunning clutch. In order to efficiently transmit torque, the design should balance race deflection with contact (Hertz) stress and race Hoop stresses. The torque values shown in this catalog are based on optimum race thicknesses subject to the following maximum stress limits.

Inner and Outer Race Hertz 450,000 p.s.i.

These design limits offer a theoretical minimum life of one million cycles from zero torque to maximum catalog torque. The use of race thicknesses different from those shown in the catalog will result in a reduced torque rating. These reduced ratings result from higher stress levels in thicker races and excessive sprag wind-up in thinner races. The application of torque exceeding the catalog rating increases stress levels and reduces cycle life.

Di = Inner race sprag diameter

Do = Outer race sprag diameter

Db = Inner race bore

De = Outer race outer diameter

L = Minimum axial space (actual retainer width + .005 inches)

Overrunning Clutches Faxable Application Data Form

For Application Assistance call: 1-800-927-3262		
Fax To: (586) 758-5204		
Date	_	
Company Name	-	
Address	_	
City State Zip	- 	
Name of Contact Title	_	
Phone Fax	-	
Type of equipment —	-	
Type of application		
☐ Overrunning ☐ Indexing ☐ Backstop		
Maximum torque at clutch		
————— pound-feet, or ————————————————————————————————————		
Power Source		
☐ Electric Motor ☐ Diesel engine		
Turbine Air Motor		
Gasoline engine Hydraulic Motor		
Load Application		
Smooth Moderate Shock	_	
Lubrication		
Runs in oil Not accessible		
Accessible for lubricating Pressure Lube		
Type or specification of lubricant		

Convers	sio	n Factors			
Length 1 in 1 ft		25.4 mm = 0.0254 m 304.8 mm = 0.3048 m	1µm 1 m 1 m	=	.00004 in 39.37 in 3.28 ft
Area 1 in ² 1 ft ²	= =	6.4516x10 ⁻⁴ m ² 9.29x10 ⁻² m ²	1 m ² 1 m ²	=	1550 in ² 10.764 ft ²
Volume 1 in ³ 1 ft ³ 1 gal (US)	=	1.639x10 ⁻⁵ m ³ 2.832x10 ⁻² m ³ 3.7854 l	1 m ³ 1 m ³ 1 l		61023 in ³ 35.315 ft ³ 0.2642 gal (US)
Mass 1 lb s ² ft ⁻¹	=	14.6 kg	1 kg	=	6.85x10 ⁻² lb s ² ft ¹
Force	=	4.45 N	1 N	=	0.225 lb

1 lb	=	4.45 N	IIN	_	0.223 10
Pressur 1 lb in ⁻² (pai)	=	6.895x10 ⁻³ Nmm ⁻² 6.895x10 ³ Nm ⁻²			145 lb in ⁻² 14.2 lb in ⁻²

Torque 1 lb in 1 lb ft	=	0.113 Nm 1.36 Nm	1 Nm 1 Nm	8.85 lb in 0.738 lb ft

Work

Κ

WOIK					
1 Btu	= 778 lb ft				
1 Btu	= 1055 J = 1.055 kJ	1 kJ	=	0.948 Btu	
1 Btu	$= 2.93 \times 10^{-4} \text{ kWh}$	1 kWh	=	3410 Btu	

Power					
1 hp	=	746 W = 0.746 kW	1 kW	=	1.34 hp

Moment of Inertia								
1 lb ft ²	=	0.04214 kgm ²	1 kgm ²		23.73 lb ft ²			
1 lb in ²	=	2.93x10 ⁻⁴ kgm ²	1 kgm ²		3417.17 lb in ²			
1 lb ft s ²	=	1.3847 kgm ²	1 kgm ²		0.738 lb ft s ²			
1 lb in s ²	=	0.1129 kgm ²	1 kgm²	=	8.8507 lb in s ²			

|--|

Temperature							
°F	=	(1.8x°C) + 32	°C	=	5/9x(°F-32)		
°F	=	1.8x(K-273) + 32					

= 5/9x (°F-32) + 273

Warranty

Formsprag LLC warrants that it will repair or replace (whichever it deems advisable) any product manufactured and sold by it which proves to be defective in material or workmanship within a period of one (1) year from the date of original purchase for consumer, commercial or industrial use. This warranty extends only to the original purchaser and is not transferable or assignable without Formsprag LLC's prior consent. This warranty covers normal use and does not cover damage or defect which results from alteration, accident, neglect, or improper installation, operation, or maintenance. Formsprag LLC's obligation under this warranty is limited to the repair or replacement of the defective product and in no event shall Formsprag LLC be liable for consequential, indirect or incidental damages of any kind incurred by reasons of the manufacture, sale or use of any defective product. Formsprag LLC neither assumes nor authorizes any other person to give any other warranty or to assume any other obligation or liability on its behalf.

Performance Assurance

Rated torque and speeds of Formsprag LLC products are provided in current catalogs to assist the buyer in selecting the proper Formsprag LLC product. In addition, application assistance is offered by Formsprag LLC for guidance to the buyer in selection of a catalog product and application of custom designed products. Since the actual performance characteristics of all Formsprag LLC products in the buyer's application is the responsibility of the buyer, performance assurance is usually accomplished through manufacture of a prototype by Formsprag LLC, and a test or qualification program on the part of the buyer.

FORMSPRAG CLUTCH

Warner Electric

Electromagnetic Clutches and Brakes - USA

South Beloit, IL 61080 815-389-3771

For application assistance: 1-800-825-9050

Electromagnetic Clutches and Brakes - Europe

Allonnes, France +33 (0)2 43 43 63 63

Precision Electric Coils - USA Columbia City, IN 46725 260-244-6183

Boston Gear

Enclosed and Open Gearing, Electrical and Mechanical P.T. Components

Quincy, MA 02171 617-328-3300

For Customer Service: 1-888-999-9860

For Application Assistance: 1-800-816-5608

Formsprag Clutch

Overrunning Clutches and Holdbacks

Warren, MI 48089 586-758-5000

For application assistance: 1-800-927-3262

Stieber Clutch

Overrunning Clutches and Holdbacks

Heidelberg, Germany +49 (0)6221 30 47 0

Marland Clutch

Roller Ramp and Sprag Type Overrunning Clutches and Backstops

Warren, MI 48089 630-455-1752

Nuttall Gear and Delroyd Worm Gear

Worm Gear and Helical Speed Reducers

Niagara Falls, NY 14302 716-731-5180

Wichita Clutch and Industrial Clutch

Pneumatic and Oil Immersed Clutches and Brakes - USA

Wichita Falls, TX 76302 940-723-3400

Pneumatic Clutches and Brakes - Europe Bedford, UK +44 (0)1234 350311

Ameridrives Couplings

Gear Couplings, Mill Spindles,

Erie. PA 16512 814-480-5000

Australia

Altra Industrial Motion -Asia Pacific

China 852 2615 9313 Taiwan 886 2 2577 8156 Singapore 65 487 4464 Thailand 66 2 322 0481

612 9894 0133

INDUSTRIAL MEX (55) 53 63 23 31 MTY (81) 83 54 10 18 DIST. AUTORIZADO QRO (442) 1 95 72 60 ventas@industrialmagza.com

www.formsprag.com

Formsprag Clutch

23601 Hoover Road - Warren, MI 48089 586-758-5000 • Fax: 586-758-5204 formsprag.clutch@formsprag.com

For application assistance: 1-800-927-3262

P-938-FC 5/05 Printed in USA